Home
Class 12
MATHS
int(e^(2x)+1)/(e^(2x)-1)dx=...

`int(e^(2x)+1)/(e^(2x)-1)dx=`

A

`log (e^x - e^(-x))+c`

B

` log (e^x +e^(-x))+c`

C

`log (e^(-x) -e^(x) )+C`

D

`log (1-e^(-x))+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int((e^(2x))/(e^(2x)-1))dx=

I=int(e^(2x)-1)/(e^(2x))dx

" (6) "int(e^(2x))/(e^(2x)+1)dx

int(e^(x))/((e^(2x)+1))dx=?

int(e^(2x))/(1+e^(2x))dx=

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int(e^(5x)-1)/(e^(2x))dx

int(e^(4x)-1)/(e^(2x))dx

int(e^(2x)+1)/(e^(x))dx

int(e^(x))/(sqrt(e^(2x)-1))dx=