Home
Class 12
MATHS
int(x^(2)+1)sqrt(x+1)dx is equal to...

`int(x^(2)+1)sqrt(x+1)dx` is equal to

A

`((x+1)^(7//2))/(7) -2 ((x+1)^(5//2))/(5) +2 ((x+1)^(3//2))/(3)+C`

B

`2 [ ((x+1)^(7//2))/(7) - 2 ((x+1)^(5//2))/(5)+((x+1)^(3//2))/(3)]+c`

C

`((x+1)^(7//2))/(7)-2((x+1)^(5//2))/(5) +C`

D

`((x+1)^(7//2))/(7) -3 ((x+1)^(5//2))/(5) +11 (x+1)^(1//2)+C`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int((x^(2)-1))/((x^(2)+1)sqrt(x^(4)+1))dx is equal to

None of these int(2x)/((1-x^(2))sqrt(x^(4)-1))dx is equal to :( A) sqrt((x^(2)-1)/(x^(2)+1))+c(B)sqrt((x^(2)+1)/(x^(2)-1))(C)sqrt(x^(4)+1)(D) None of these

" 3."int(x^(2)dx)/(sqrt(1+x))" is equal to "

int(x^(2)-1)/((x^(2)+1)sqrt(x^(4)+1)) dx is equal to -

int sqrt(e^(x)-1)dx is equal to

int(x^(2)+5x-1)/(sqrt(x))dx equals

The integral int(1)/((1+x^(2))sqrt(1-x^(2)))dx is equal to