Home
Class 12
MATHS
int((4e^x-25)/(2e^x-5))dx=A x+B log/(2e^...

`int((4e^x-25)/(2e^x-5))dx=A x+B log/(2e^x)-5/(+c)` then

A

A = ,5 B = 3

B

A = ,5 B = −3

C

A = ,5 B = −3

D

A = − ,5 B = −3

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int((4e^(x)-25)/(2e^(x)-5))dx=Ax+B(log)/(2e^(x))-(5)/(+c)

int(4e^x+4)/(2e^x-8)dx=

int((2e^(x)+5)/(2e^(x)+1))dx=

int(e^(5x)-1)/(e^(2x))dx

int(3e^(2x)+5)/(4e^(2x)-5)dx=

int(2e^(x))/(3+4e^(x))dx=

int(4e^x+6e^(-x))/(9e^x-4e^(-x))dx=A x+Blog(9e^(2x)-4)+C ,t h e n A=_________ _, B=_________, C=___________

If int(4e^(x)+6e^(-x))/(9e^(x)-4e^(-x))dx=Ax+B log(9e^(2x)-4)+C , then |4A|=