Home
Class 12
MATHS
If l(n)=intx^(n).e^(cx)dx for n ge 1, th...

If `l_(n)=intx^(n).e^(cx)dx` for `n ge 1`, then `C.l_(n)+n.l_(n-1)` is equal to

A

`x^n e^(cx)`

B

`x^n`

C

`e^(cx)`

D

`x^n +e^(cx)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

l_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(nto oo)n[l_(n)+l_(n-2)] equals

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

Lines x=n, y=n^(3) intersect at the point A_(n).L_(n) is a line through A_(n) parallel to x+y=0 and make an intercept of length l_(n) on the axis of x, then the value of sum_(n=1)^(5)l_(n) is equal to K^(4)-16 , where K =

If l_(m,n)=intx^(m)cosnxdx, then prove that l_(m,n)=(x^(m)sinnx)/(n)+(mx^(m-1)cosnx)/(n^(2))-(m(m-1))/(n^(2))l_(m-2,n)

If the direction cosines of two lines are (l_(1), m_(1), n_(1)) and (l_(2), m_(2), n_(2)) and the angle between them is theta then l_(1)^(2)+m_(1)^(2)+n_(1)^(2)=1=l_(2)^(2)+m_(2)^(2)+n_(2)^(2) and costheta = l_(1)l_(2)+m_(1)m_(2)+n_(1)n_(2) If l_(1)=1/sqrt(3), m_(1)=1/sqrt(3) then the value of n_(1) is equal to

If l_(n)=intcos^(n)xdx, prove that l_(n)=(1)/(n)(cos^(n-1)xsinx)+((n-1)/(n))l_(n-2) .

If m, n in N , then l_(m n) = int_(0)^(1) x^(m) (1-x)^(n) dx is equal to