Home
Class 12
MATHS
intxtan^(-1)x dx =...

`intxtan^(-1)x dx =`

A

`1/2 (x^2+1) tan^(-1) x -(1)/(2) x+c`

B

`1/2 (x^2-1) tan^(-1) x -(1)/(2) x+c`

C

`1/2 (x^2+1) tan^(-1) x +(1)/(2) x+c`

D

`1/2 (x^2+1) tan^(-1) x - x+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : intxtan^(-1)xdx

Consider intxtan^(-1)xdx=A(x^(2)+1)tan^(-1)x+Bx+C where , C is the constant of integration. What is the value of A ?

Consider intxtan^(-1)xdx=A(x^(2)+1)tan^(-1)x+Bx+C where , C is the constant of integration. What is the value of B ?

Evaluate intxtan^-1xdx

Evaluate the following integrals: intxtan^(2)xdx

(i) int x sin^-1 x dx (ii) int x cos^-1 x dx (iii) int x tan^-1 x dx (iv) int x cot^-1 x dx

intxtan^2xdx=

(i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx

If intf(x)dx=g(x), then : intf^(-1)(x)dx=

If f(x)dx=g(x) and f^(-1)(x) is differentiable, then intf^(-1)(x)dx equal to