Home
Class 12
MATHS
Find int[log(logx)+1/((logx)^2)]dx...

Find `int[log(logx)+1/((logx)^2)]dx`

A

`x log (log x)+(x)/(log x)+C`

B

`x log (log x) - (x)/(log x)+c`

C

`x log (log x)+(log x)/(x)+c`

D

`x log (log x )- (log x)/(x) +c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

"F i n d"int[log(logx)+1/((logx)^2)]dx Find log (log x)+ |dx 2 (log x)

int[(1)/(logx)-(1)/((logx)^(2))]dx=

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx

Evaluate the following integrals: int{log(logx)+(1)/((logx)^(2))}dx

int(log(logx))/(x.logx)dx=

int(log(x//e))/((logx)^(2))dx=

Evaluate : int[(1)/(logx)-(1)/((log x)^(2))]dx