Home
Class 12
MATHS
inttan^(-1)sqrt(x) dx is equal to...

`inttan^(-1)sqrt(x) dx` is equal to

A

`(x+1) tan^(-1) sqrt(x) - sqrt(x) +C`

B

`x tan^(-1) sqrt(x) - sqrt(x) +C`

C

`sqrt(x)-x tan^(-1) sqrt(x) +C`

D

`sqrt(x)-(x+1) tan^(-1) sqrt(x) +C`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^(2)+1)sqrt(x+1)dx is equal to

What is inttan^(-1)(secx+tanx) dx equal to ?

The value of inttan^(3)2xsec2x dx is equal to:

int sqrt(e^(x)-1)dx is equal to

int tan^(-1){sqrt(sqrt(x)-1)}dx is equal to

The value of int(sin^-1sqrt(x)-cos^-1sqrt(x))/(sin^-1sqrt(x)+cos^-1sqrt(x))dx is equal to

The value of the integral int_(-1)^(1)log_(e)(sqrt(1-x)+sqrt(1+x))dx is equal to :

inttan(sin^(-1)x)dx=

int(a^(sqrt(x)))/(sqrt(x))dx is equal to