Home
Class 12
MATHS
int(dx)/(e^(2x)-3e^(x))=...

`int(dx)/(e^(2x)-3e^(x))=`

A

`(1)/(3e^x)-(x)/(9) +(1)/(9) log (e^x +3)+C`

B

`(1)/(3e^x)+(1)/(9) log (e^x-3)-(x)/(9) +C`

C

`-(1)/(3e^x)-(x)/(9) +C`

D

`-(1)/(3e^(x))-(1)/(9) log(e^x +3)+C`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(e^(x)+e^(2x))

int(dx)/(e^(3x)+e^(-3x))=

int(e^(x))/((e^(3x)-3e^(2x)-e^(x)+3))dx

int(1)/(3e^(x)+2e^(-x))dx=

Let f(x)=int(dx)/(e^(x)+8e^(-x)+4e^(-3x)),g(x)=int(dx)/(e^(3x)+8e^(x)+4e^(-x)). int(f(x)-2g(x))dx

(3) int(dx)/(1+e^(2x))

int(3e^(x))/(1-e^(x))dx

int(e^(2x)+1)/(e^(x))dx

(i) int (dx)/(e^x+e^(-x)) (ii) int e^x/(e^(2x)+1) dx

int (e^(x)dx)/(e^(2x)+4e^(x)+3)