Home
Class 12
MATHS
intx^(5).e^(x^(2))dx=...

`intx^(5).e^(x^(2))dx=`

A

`1/2 x^4 e^(x^2) - x^2 e^(x^2) +e^(x^2)+c`

B

`1/2 x^4 e^(x^2) + x^2 e^(x^2) +e^(x^2)+c`

C

`1/2 x^4 e^(x^2) - x^2 e^(x^2) -e^(x^2)+c`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If intx^(2).e^(x^(3))dx=u.e^(x^(3))+c, then u=

intx^(4)e^(2x)dx=

Evaluate: intx^(2)e^(x) dx

intxe^(x^(2)log2)e^(x^(2))dx="________"+c

If intx^(3).e^(-x)dx=-e^(-x).f(x)+c, then f(x)=

intx^3e^(x^2)dx

intx/((x-1)^2(x+2))dx

intx^5/sqrt(1+x^2)dx

intx^6(x^3-2x^2+5)dx

intx^(2)e^(x^(3))cos(e^(x^(3)))dx is equalto