Home
Class 12
MATHS
If In=int( lnx)^n dx then In+nI(n-1)...

If `I_n=int( lnx)^n dx` then `I_n+nI_(n-1)`

A

`x (logx)^n`

B

`(x log x)^n`

C

`(log x)^(n-1)`

D

`n (log x)^(n)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int(ln x)^(n)dx then I_(n)+nI_(n-1)

If I_(n)-int(lnx)^(n)dx, then I_(10)+10I_(9) is equal to (where C is the constant of integration)

If I_(n)=int cos^(n)xdx, then (n+1)I_(n+1)-nI_(n-1)=

If I_(n)=int(sin x)^(n)dx,n in N, then 5I_(4)-6I_(6) is equal to

If I_(n)=int_(1)^(e)(log x)^(n)dx then I_(8)+8I_(7)=

If I_(n)=int x^(n)e^(x)dx, then I_(5)+5I_(4)=

If I_(n)=int(sinnx)/(sinx)dx, then I_(5)-I_(3)=

If = int_(1)^(e) (logx)^(n) dx, "then"I_(n)+nI_(n-1) is equal to