Home
Class 12
MATHS
int(x e^(x))/((1+x)^(2)) dx is equal to...

`int(x e^(x))/((1+x)^(2))` dx is equal to

A

`(e^(-x))/(1+x)+C`

B

`-(e^(-x))/(1+x)+C`

C

`(e^x)/(1+x)+c`

D

`-(e^x)/(1+x)+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^2e^(x))/((x+2)^(2))dx is equal to

int e^(x)""((x-1)/(x^(2)))dx is equal to

int e^(x)((x-2)/((x-1)^(2)))dx is equal to (i) (e^(x))/(x-1)+C (ii) (e^(x))/((x-1)^(2))+C( iii) (2e^(x))/((x-1)^(2))+C( iv )(e^(x)-1)/(x-1)+C

int (x+3)/(x+4)^(2)e^(x)\ dx is equal to

int_(-1)^(1)(e^(x)+e^(-x))/(2(1+e^(2x)))dx is equal to

int(1)/((e^(x)+e^(-x))^(2))dx is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int(2)/((e^(x)+e^(-x))^(2))dx is equal to