Home
Class 12
MATHS
The value of int(e^(x)(x^(2)tan^(-1)x+ta...

The value of `int(e^(x)(x^(2)tan^(-1)x+tan^(-1)x+1))/(x^(2)+1)dx` is equal to

A

`e^x tan^(-1) x+c`

B

`tan^(-1) (e^x)+c`

C

`tan^(-1) (x^e)+c`

D

`e^(tan^(-1)x)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int(tan^(-1)x)/(x^(2))*dx

int(((x^(2)+2)a^((x+tan^(-1)x)))/(x^(2)+1))dx is equal to

int((tan^(-1)x)^(3))/(1+x^(2))dx is equal to

inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx is equal to

int(e^(ln tan^(-1)x))/(1+x^(2))dx

int ((x^(2)+2)(a^((x+tan^(-1)x)))/(x^(2)+1)) dx is equal to

int(e^(m tan^(-1)x))/(1+x^(2))dx

int(e^(a tan^(-1)x))/(1+x^(2))dx

int(e^(a tan^(-1)x))/(1+x^(2))dx