Home
Class 12
MATHS
e^(tan^(-1)x)((1+x+x^2)/(1+x^2))dx is eq...

`e^(tan^(-1)x)((1+x+x^2)/(1+x^2))dx` is equal to

A

`xe^(tan^(-1)x ) +C`

B

` x^2 e^(tan^(-1)x)+C`

C

`(1)/(x)e^(tan^(-1)x )+C`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(tan^(-1)x)((1)/(1+x^(2)))dx=

int((tan^(-1)x)^(3))/(1+x^(2))dx is equal to

int e^(tan^(-1)x)(1+x+x^(2))d(cot^(-1)x) is equal to -e^(tan^(-1)x)+c(b)e^(tan^(-1)x)+c-xe^(tan^(-1)x)+c(d)xe^(tan-1)x+c

int e^(tan^(-1)x)((1+x+x^(2))/(1+x^(2)))dx

int ((x^(2)+2)(a^((x+tan^(-1)x)))/(x^(2)+1)) dx is equal to

int e^(tan^(-1)x)(1+x+x^(2))d(cot^(-1)x) is equal to

int e^(tan^(1)x)(1+(x)/(1+x^(2)))dx

What is int_(0)^(1) (e^(tan^(-1))x dx)/(1+x^(2)) equal to

int(e^(tan^(-1)x))/((1+x^(2))^(2))dx

int e^(tan^(-1)x)*((1+x+x^(2))/(1+x^(2)))dx