Home
Class 12
MATHS
int(x-1)/((x-3)(x-2))dx=...

`int(x-1)/((x-3)(x-2))dx=`

A

`log (x-3 )- log (x-2)+c`

B

`log (x-3)^2 - log (x-2) +c`

C

`log (x-3) +log (x-2) +c`

D

`log (x-3)^2 +log (x-2) +c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int(x-1)/((x-3)(x-2)^(2))dx

int (dx)/((x+1)(2x+1)) (ii) int (x-1)/((x-2)(x-3)) dx .

int(3x)/((x-1)(x-2)(x-3))dx

Evaluate: (i) int(x^(2)+x+5)/(3x+2)dx (ii) int(2x+3)/((x-1)^(2))dx

int(3x+2)/((x-1)(2x+3))dx

int(1-x)/(2x+3)dx

int(5x-1)/(3x^2+x+2)dx=

Column I a) int(x^2-x+1)/(x^3-4x^2+4x)dx b) int(x^2-1)/(x(x-2)^3)dx c) int(x^3+1)/(x(x-2)^2)dx d) int(x^5+1)/(x(x-2)^3)dx COLUMN II (which of the following functions appear in integration of functions in columnI) p) log|x| q) log|x-2| r.) 1/((x-2)) s) x

int(e^(x))/((1+x)^(3))dx-int(e^(x))/(2(1+x)^(2))dx=

int((x-1))/((x-1)^(2)(2x+3))dx