Home
Class 12
MATHS
int(dx)/(e^(x)+1-2e^(-x))=...

`int(dx)/(e^(x)+1-2e^(-x))=`

A

`log (e^x -1) - log (e^x +2)+C`

B

`1/2 log (e^x -1) -(1)/(3) log (e^x +2 +c `

C

`(1)/(3) log (e^x -1)-(1)/(3) log (e^x +2) +c`

D

`(1)/(3) log (e^x -1) +(1)/(3) log (e^x +2)+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(3e^(x)+2e^(-x))dx=

STATEMENT-1 : int(dx)/(e^(x)+e^(-x)+2)=-(1)/(e^(x)+1)+c and STATEMENT-2 : int(d(f(x)))/((f(x))^(2))=-(1)/(f(x))+c

int(dx)/(e^(x)+e^(2x))

int(dx)/(e^(x)(e^(x)+1)^(2))

(i) int (dx)/(e^x+e^(-x)) (ii) int e^x/(e^(2x)+1) dx

int(e^(x))/((e^(x)-1)(e^(x)+2))dx=

int(e^(x)dx)/(e^(x)-1)

(2) int(1)/(e^(x)+e^(-x))dx is equal to

int(1)/((e^(x)+e^(-x))^(2))dx

int(1)/((e^(x)+e^(-x))^(2))dx=