Home
Class 12
MATHS
int(2x+3)/((x-1)(x^2+1))dx =loge{(x-1)^(...

`int(2x+3)/((x-1)(x^2+1))dx =log_e{(x-1)^(5/2)(x^2+1)^a-1/2 tan^-1 x+C,x > 1` where `C` is any arbitrary constant, then the value of '`a'` is

A

`5//4`

B

`-5//3`

C

`-5//6`

D

`-5//4`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int(2x+3)/((x-1)(x^(2)+1))dx=log_(e){(x-1)^((5)/(2))(x^(2)+1)^(a)-(1)/(2)tan^(-1)x+C,x>1 where C is any arbitrary constant,then the value of a'a' is

For real numbers alpha, beta, gamma and delta , if int((x^(2)-1)+tan^(-1)((x^(2)+1)/(x)))/((x^(4)+3x^(2)+1)tan^(-1)((x^(2)+1)/(x)))dx = alpha log_(e)(tan^(-1)((x^(2)+1)/(x)))+beta "tan"^(-1)((gamma(x^(2)-1))/(x))+delta tan ((x^(2)+1)/(x))+C where is an arbitrary constant, then the value of 10(alpha+betagamma+delta) is equal to........

int(sin^(-1)x)/(sqrt(1-x^(2)))dx is equal to Where, C is an arbitrary constant.

If int(3x+2)/(2x^(2)+2x+1)dx = m log(2x^(2)+2x+1)+(1)/(2)tan^(-1)u+c , then

If int1/((x^(2)-1))log((x-1)/(x+1))dx=A[log((x-1)/(x+1))]^(2)+c , then A =

Statement -1 : If I_(1)=int(e^(x))/(e^(4x)+e^(2x)+1)dx and I_(2)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx , then I_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C where C is an arbitrary constant. Statement -2 : A primitive of f(x) =(x^(2)-1)/(x^(4)+x^(2)+1) is (1)/(2)log((x^(2)-x+1)/(x^(2)+x+1)) .

int (dx)/((x+1)(x-2))=A log (x+1)+B log (x-2)+C , where

If int(dx)/((x^(2)+x+1)^(2))=atan^(-1)((2x+1)/(sqrt(3)))+b((2x+1)/(x^(2)+x+1))+C , x gt 0 where C is the constant of integration, then the value of 9(sqrt(3)a+b) is equal to __________.