Home
Class 12
MATHS
int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=...

`int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=`

A

`sin 2x+c`

B

`-(1)/(2) sin 2x +c`

C

`1/2 sin 2x +C`

D

`-sin 2x +c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If int(sin^(8)x-cos^(8)x)/(1-2sin^(2)xcos^(2)x)dx=A sin 2x+B, then A =

Find int(sin^3x+cos^3x)/(sin^2xcos^2x)dx .

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx=

If int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx=a sin2x+C then a=

Evaluate: int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x+cos^(2)x)dx

int(sin2xcos2x)/(sin^(4)2x+cos^(4)2x)dx=

Integrate the functions (sin^(8)-cos^(8)x)/(1-2sin^(2)x cos^(2)x)

int(sin^(2)x-cos^(2)x)/(sin^(2)xcos^(2)x)dx=

int(cos2x)/(sin^(2)xcos^(2)x)dx=