Home
Class 12
MATHS
The integral int(sec^2x)/((secx+tanx)^(9...

The integral `int(sec^2x)/((secx+tanx)^(9//2))dx ` equals for some arbitrary constant k

A

`(-1)/( (sec x + tan x)^(11//2)){(1)/(11)-(1)/(7) ( sec x + tan x)^2 }+K`

B

`(1)/((sec x + tan x)^(11//2) ) {(1)/(11) - (1)/(7) ( sec x + an x)^2 }+K`

C

`(-1)/( ( sec x +tan x )^(11/2)){(1)/(11) +(1)/(7) ( sec x + tan x)^2 }+K`

D

`(1)/((sec x + tan x)^(11//2)){(1)/(11) +(1)/(7) ( sec x + tan x)^2}+K`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int (sec^2x)/(secx+tanx)^(9/2)dx equals to (for some arbitrary constant K ) (A) -1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (B) 1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (C) -1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K (D) 1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K

The integral int(sec^(2)x)/((sec x+tan x)^((9)/(2)))dx equals (for some arbitrary constant K)-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)+(1)/(7)(sec x+tan x)^(2)}+K

int(secx+tanx)^(2)dx=

int(sec^2x)/(2+tanx)dx

int(sec^(2)x)/((1+tanx))dx

int(sec^(2)x+1)/(x+tanx)dx

int(secx)/(log(secx+tanx))dx=

Integrate: int (secx dx)/(sec x + tan x)