Home
Class 12
MATHS
int(1)/(x^(2)(x^(4)+1)^(3//4))dx=...

`int(1)/(x^(2)(x^(4)+1)^(3//4))dx=`

A

`((x^4 +1)^(1//4))/(x) +c`

B

`-((x^4 +1)^(1//4))/(x) +c`

C

`(3)/(4) ((x^4 +1)^(3//4))/(x) +c`

D

`(4)/(3) ((x^4 +1)^(3//4))/(x) +c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int1/(x^(2)(x^(4)+1)^(3//4)) dx is equal to

If int(dx)/(x^(2)(x^(4)+1)^(3//4))=A((x^(4)+1)/(x^(4)))^(B)+c, then

int (dx)/(x^(2)(x^(4)+1)^(3/4))is

Evaluate: int(dx)/(x^(2)(x^(4)+1)^((3)/(4)))

of int(dx)/(x^(2)(x^(4)+1)^((3)/(4)))

int(1)/(x^(3)-x^(4))dx=

int(x^(3))/(x^(4)+1)dx

int(1)/(2x^(2)+3x-4)dx

int x^(3)(x^(2)-1)^(1//4)dx

int(2x)/((x^(2)+1)(x^(4)+4))dx