Home
Class 12
MATHS
int(x-1)/((x+1)^(3))e^(x)dx=...

`int(x-1)/((x+1)^(3))e^(x)dx=`

A

`(-e^x)/((x+1)^2)+c`

B

`(e^x)/((x+1)^2)+c`

C

`(e^x)/((x+1)^3)+c`

D

`(-e^x)/((x+1)^3)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int(x-3)/((x-1)^(3)).e^(x)dx is equal to

int e^(x)(x-1)/((x+1)^(3))dx

int_(1)^(3)e^(-x)dx

If inte^(x)(x-1)/((x+1)^(3))dx=(e^(x))/((g(x))^(a))+c , then

int((x-1)e^(x))/((x+1)^(3))dx

Evaluate: int e^(x)(x-1)/((x+1)^(3))dx

int_(-1)^(1)(e^(x)-e^(-x))dx=

Evaluate: int((x-1)e^(x))/((x+1)^(3))dx

int((x-1).e^(x))/((x+1)^(3))dx=

int(1)/(e^(x)(1+e^(-x)))dx=