Home
Class 12
MATHS
Let f(x) = {(sin (tan^(-1) x) + sin (cot...

Let `f(x) = {(sin (tan^(-1) x) + sin (cot^(-1) x)}^2 - 1`, where `|x| gt 1` and `dy/dx = 1/2 d/dx (sin^(-1) f(x))`. If `y(sqrt3) = pi/6` then `y( -sqrt3)`

A

`(pi)/(3)`

B

`(2pi)/(3)`

C

`-(pi)/(6)`

D

`(5pi)/(6)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

(d) / (dx) (cos ^ (2) (tan ^ (- 1) (sin (cot ^ (- 1) x))))

f(x) = sin^(-1)(sin x) then (d)/(dx)f(x) at x = (7pi)/(2) is

(d)/(dx)[sin^(-1)x+sin^(-1)sqrt(1-x^(2))]=

Find (d)/(dx)[sqrt(1-x^(2))sin^(-1)x-x].

Prove that (d)/(dx)(sin^(-1)x)=(1)/(sqrt(1-x^(2)) , where x in [-1,1].

(d)/(dx)[sin^(-1)sqrt(((1-x))/(2)]=

d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is equal to

(d)/(dx)[sin(2tan^(-1)sqrt((1+x)/(1-x)))]=

(d)/(dx)[sin^(-1)(x^(2)-(1)/(2))]" at "x=0

Differentiate sin ^(-1) ((2 cos x + 3 sin x )/(sqrt(13))) w.r.to x