Home
Class 12
MATHS
int (0) ^(pi//4) sin (x- [x])d (x-[x]) i...

`int _(0) ^(pi//4) sin (x- [x])d (x-[x])` is equal to

A

`1/2`

B

`1-1/sqrt2`

C

`1`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4)"sin" x d(x- [x]) is equal to , where [x] denotes greatest integer function-

int_(0)^( pi/4)(sin x-cos x)dx

int_(0)^(pi//4)e^(x)sin x dx =

int_(0)^(pi//4) (sin x +cos x)/(3+sin2x)dx is equal to

int_(0)^(pi)(x sin x)/(1-sin x)dx=

The value of int_(0)^(2pi)[|sin x |+|cos x |] d x is equal to

int_(0)^( pi)(x sin x)/(1+sin x)dx

If int_(0)^(pi) x f (sin x) dx = A int _(0)^(pi//2) f(sin x) dx , then A is equal to

If A= int _(0)^(pi) (sin x)/(x ^(2))dx, then int _(0)^(pi//2) (cos 2 x )/(x) dt is equal to: