Home
Class 12
MATHS
int(0)^(pi//2) log (tan x ) dx=...

`int_(0)^(pi//2) log (tan x ) dx=`

A

`pi/2 log_e 2`

B

`-pi /2 log_e 2`

C

`pi log_e 2`

D

`0`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate (i) int_(0)^(pi//2)(d x)/(1+sqrt(tan x)) (ii) int_(0)^(pi//2) log (tan x ) d x (iii) int_(0)^(pi//4) log (1+tan x ) d x (iv) int_(0)^(pi//2)(sin x- cos x)/(1+ sin x cos x)d x

int_(0)^(pi//2) log (cotx ) dx=

int_(0)^(pi//4) log (1+tan x) dx =?

If int_(0)^(pi//2) log(cosx) dx=pi/2 log (1/2), then int_(0) ^(pi//2) log (sec x ) dx =

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

int_(0)^(pi//2)log (sec x) dx=

int_0^(pi//2)log(tanx)dx

The value of the integral int _(0)^(pi//2) log | tan x| dx is