Home
Class 12
MATHS
If I(10) = int0^(pi//2)x^(10) sin x dx t...

If `I_(10) = int_0^(pi//2)x^(10)` sin x dx then the value of `I_(10) + 90I_8` is

A

`10 (pi//2)^6`

B

`10(pi//2)^9`

C

`10(pi//2)^7`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If u_(10)=int_(0)^(10)x^(10)sin xdx, then the value of u_(10)+90u_(8) is :

If u _(n) = int _(0) ^(pi//2) x ^(n) sin x dx, n in N then the value of u _(10) + 90 u _(s) is

The value of int_(0)^(pi//2) x^(10) sin x" dx" , is then the value of mu_(10)+90mu_(8) , is

If I_(1)=int_(0)^( pi)x sin xe^(cos4x)dx , and I_(2)=int_(0)^( pi/2)cos xe^(cos4x)dx ,then the value of [(I_(1))/(I_(2))] is (where [.] denotes the greatest integer function)

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

I_(10)=int_(0)^((pi)/(2))x^(10)sin xdx then I_(10)+90I_(8) is (A)10((pi)/(2))^(6)(B)10((pi)/(2))^(9)(C)10((pi)/(2))^(8)(D)10((pi)/(2))^(7)

If I=int_(0)^(2pi) sin^(2) x" dx" , then

If " " I=int_0^(pi/4) dx/(1+cos2x) Find the value of 2I