Home
Class 12
MATHS
int(0)^(oo) (xdx)/((1+x) (1+x^(2)))=...

`int_(0)^(oo) (xdx)/((1+x) (1+x^(2)))=`

A

0

B

`pi//2`

C

`pi//4`

D

`1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(oo)(x)/((1+x)(1+x^(2)))dx

Prove that: int_(0)^(oo) (x)/((1+x)(1+x)^(2))dx =(pi)/(4)

int_(0)^(oo)(x)/((1+x)(1+x^(2))) dx equals to :

The value of int_(0)^(oo)(x)/((1+x)(x^(2)+1))dx is

int_(0)^(oo)(dx)/((1+x^(2))^(4))=

int _(0)^(1) (xdx)/([x + sqrt(1-x^(2))]sqrt(1-x^(2))) is equal to

int(xdx)/((x-1)(x^(2)+4))

The value of definite integral int_(0)^(oo)In(x+(1)/(x))(dx)/(1+x^(2)) is equal to

int_(0)^(oo)(tan^(-1)x)/(1+x^(2))dx