Home
Class 12
MATHS
The value of I=int(0)^(pi//4)(tan^(*n+1)...

The value of `I=int_(0)^(pi//4)(tan^(*n+1)x)dx+(1)/(2)int_(0)^(pi//2)tan^(n-1)((x)/(2))dx` is equal to

A

`1/n`

B

`(n + 2)/(2n + 1)`

C

`(2n-1)/(n)`

D

`(2n -3)/(3n - 2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4) tan x dx

The value of int_(0)^(pi//2) (1)/(1+tan^(3)x)dx is

The value of int_(0)^(pi//2)(dx)/(1+tan^(3)x) is

int_(0)^(pi//2)(1)/(1+tan^(3)x)dx=

Find the value of int_(0)^(2pi)1/(1+tan^(4)x)dx

int_(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to

Evaluate : int_(0)^(pi//4) tan ^(2) x dx