Home
Class 12
MATHS
If (d)/(dx)f(x)=g(x) for a le x le b th...

If `(d)/(dx)f(x)=g(x)` for `a le x le b` then, `overset(b)underset(a)int f(x) g(x) dx` equals

A

`f(b) - f(a)`

B

`g(b) - g(a)`

C

`([f(b)]^2- [f(a)]^2)/(2)`

D

`([g(b)]^2 - [g(a)]^2)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If (d)/(dx)f(x)=g(x) for a le x le b then, int_(a)^(b) f(x) g(x) dx equals

int[(d)/(dx)f(x)]dx=

Consider the following statement : S_(1) : The value of int_(0)^(2pi)cos^(-1)(cosx) dx is pi^(2) S_(2) : Area enclosed by the curve |x-2| + |y+1| = 1 is equal to 3 sq . Unit S_(3) : If d/dx f(x) = g(x) for a le x le b , then int_(a)^(b)f(x)g(x)dx equals to ([f(b)]^(2)-[f(a)]^(2))/(2) . S_(4) : Area of the region R = {(x,y), x^(2) le y le x} is 1/6 State, in order, whether S_(1), S_(2), S_(3), S_(4) are true or false

if (d)/(dx)f(x)=g(x), find the value of int_(a)^(b)f(x)g(x)dx

Theorem: (d)/(dx)(int f(x)dx=f(x)

If (d)/(dx)f(x)=g(x), then int f(x)g(x)dx is equal to:

If (d)/(dx)(f(x))=4x such that f(2)=0, then f(x) is

If d/dx[f(x)]=xcosx+sinx " and " f(0)=2 , then f(x)=

(d)/(dx)(int_(f(x))^(g(x))phi(t)dt) is equal to