Home
Class 12
MATHS
If int (2)^(e) (1/(logx)-1/(logx)^(2))d...

If ` int _(2)^(e) (1/(logx)-1/(logx)^(2))dx = a + b/(log2) , ` then

A

`alpha = e, beta = -2`

B

`alpha = e, beta =2`

C

`alpha = -e, beta =2 `

D

` alpha = -e, beta =-2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(e)^(e^(2)) (1/logx-1/((logx)^(2)))dx=

int(logx)^(2)dx=?

int{(1)/((logx))-(1)/((logx)^(2))}dx=?

int[(1)/(logx)-(1)/((logx)^(2))]dx=

int_(0)^(e^(2)){(1)/((logx))-(1)/((logx)^(2))}dx

int(log(x//e))/((logx)^(2))dx=

int1/(x(1-logx)^(2))dx=

int (log x)/(1+logx)^2 dx