Home
Class 12
MATHS
If I1=inte^(e^2)dx/(lnx) and I2=int1^2e^...

If `I_1=int_e^(e^2)dx/(lnx)` and `I_2=int_1^2e^x/xdx`

A

`I_1 = I_2`

B

`I_1 gt I_2`

C

`I_1 lt I_2`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If l_1=int_e^(e^2) dx/logx and l_2=int_1^2 e^x/xdx , then (A) l_1=2l_2 (B) l_1+l_2=0 (C) 2l_1=l_2 (D) l_1=l_2

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

int_0^1 x^2e^xdx

If I_(1)=int_(n)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

If I_(1)=int_(e )^(e^(2)) (dx)/(logx)"and "I_(2)=int_(1)^(2)(e^(x))/(x)dx ,then

Let I_1=int_0^1e^(x^2)dx and I_2=int_0^(12)2^(x^2)e^(x^2)dx then the value of I_1 +I_2 is equal to

int_1^2e^({x})dx=?

If I _(1) = int _(e) ^(e ^(2)) (dx )/( ln x ) and I _(2) = int _(1) ^(2) (e ^(x))/(x) dx, then

If I_(1)=int_(0)^(1)(e^(x))/(1+x)dx aand I_(2)=int_(0)^(1)(x^(2))/(e^(x^(3))(2-x^(3)))dx then (I_(1))/(I_(2)) is