Home
Class 12
MATHS
int(0)^(pi//4) cosxe^(sinx) dx is equal ...

`int_(0)^(pi//4) cosxe^(sinx) dx` is equal to

A

`e + 1`

B

`e -1 `

C

`e`

D

`-e`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) cosx\ e^(sinx)\ dx is equal to

int _(0)^(pi//2) (cosx)/(1+sinx)dx is equal to

int_(0)^(pi//4)(cosx-sinx)dx+int_(pi//4)^(5pi//4)(sinx-cosx)dx+int_(2pi)^(pi//4)(cosx-sinx)dx is equal to

The value of int_(0)^(2pi)|cosx-sinx|dx is equal to

int_(0)^(pi//2) e^x(sinx+cosx) dx

int_0^(pi/2) cosx/(1+sinx)dx

int_(0)^( pi/2)(cosx)/(1+sinx)dx

int_(0)^( pi/2)(cosx/(2+sinx))dx