Home
Class 12
MATHS
The value of int(1//e)^(tan x) (t)/(1+ t...

The value of `int_(1//e)^(tan x) (t)/(1+ t^(2)) dt+ int_(1//e)^(cot x) (1)/(t(1+ t^(2)))dt` is

A

`-1 `

B

`1`

C

`0`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(1//e)^(tanx)(t)/(1+t^(2))dt+int_(1//e)^(cotx)(1)/(t(1+t^(2)))dt , where x in (pi//6, pi//3 ), is equal to :

For all values of , int_(1//e)^(tanx) (t)/(1+t^(2))dt+int_(1//e)^(tanx) (dt)/(t(t+t^(2))) has the value

[int_(1/e)^( tan x)(tdt)/(1+t^(2))+int_(1/e)^( cot x)(dt)/(t(1+t^(2)))" is "],[" equal to "]

the value of int_((1)/(e)rarr tan x)(tdt)/(1+t^(2))+int_((1)/(e)rarr cot x)(dt)/(t*(1+t^(2)))=

The value of int_((1)/(epsilon))^(tan x)(tdt)/(1+t^(2))+int_((1)/(epsilon))^(cot x)(dt)/(t(1+t^(2))), where x in((pi)/(6),(pi)/(3)), is equal to: (a)0(b) 2 (c) 1 (d) none of these

If A = int_(1)^(sintheta) (t)/(1 + r^(2)) dt and B = int_(1)^("cosec"theta) (1)/(t(1 +t^(2))) dt , then the value of the determinant |(A,A^(2),B),(e^(A +B),B^(2),-1),(1,A^(2) + B^(2) ,-1)| is

The value of int_(e^(-1))^(e) (dt)/(t(t+1)) is equal to

The value of (int_(0)^(1)(dt)/(sqrt(1-t^(4))))/(int_(0)^(1)(1)/(sqrt(1+t^(4)))dt) is