Home
Class 12
MATHS
int(pi/4)^(pi/2) e^x(logsinx+cotx)dx...

`int_(pi/4)^(pi/2) e^x(logsinx+cotx)dx`

A

`e^(pi//4) log 2`

B

`-e^(pi//4) log 2`

C

`1/2 e^(pi//4) log 2`

D

`-1/2 e^(-pi//4)log 2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int_((pi)/(4))^((pi)/(2))e^(x)(log sin x+cot x)dx

inte^(3logsinx)cotx dx=

int_(-pi//4)^(pi//4) e^(-x)sin x" dx" is

int_((-pi)/(4))^((pi)/(2))e^(-x)sin xdx=

int_(0)^(pi//4)(cosx-sinx)dx+int_(pi//4)^(5pi//4)(sinx-cosx)dx+int_(2pi)^(pi//4)(cosx-sinx)dx is equal to

int_(0)^(pi//2) log (cotx ) dx=

int_(pi//3)^(pi//4)(tanx+cotx)^(2)dx

Prove that int_(0)^(pi//2)(2logsinx-logsin2x)dx=(pi)/(2)(log2) .

int_(0)^(pi//4)e^(x)sin x dx =