Home
Class 12
MATHS
The value of the integral int0^("log" 5)...

The value of the integral `int_0^("log" 5) (e^x sqrt(e^x - 1))/(e^x + 3) dx` is

A

`3 + 2pi`

B

`4- pi`

C

`2 + pi`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

The value of the integral int_0^(log5) (e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx , is

The value of integral int_(1)^(e) (log x)^(3)dx , is

int_(0)^(ln13)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of int_0^(log5) (e^xsqrt(e^x-1))/(e^x+3)dx is (A) 3+2pi (B) 4-pi (C) 2+pi (D) none of these

The value of the integral int_(1)^(2)e^(x)(log_(e)x+(x+1)/(x))dx is

The value of the integral int(dx)/((e^(x)+e^(-x))^2) is