Home
Class 12
MATHS
If int(log" "2)^(x)(du)/((e^(u)-1)^(1//2...

If `int_(log" "2)^(x)(du)/((e^(u)-1)^(1//2))=(pi)/(6)`, then `e^(x)` is equal to

A

1

B

2

C

4

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

if int_(log2rarr x)(du)/((e^(u)-1)^((1)/(2)))=(pi)/(6) then e^(x)=

If : int_(ln 2)^(x)(1)/(sqrt(e^(t)-1))dt=(pi)/(6) , then : x =

If int_(log2)^(x) (1)/(sqrt(e^(x)-1))dx=(pi)/(6) then x is equal to

If int_(ln2)^(x)(dt)/(sqrt(e^(t)-1))=(pi)/(6), then x=

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int_(1//e)^(e) (dx)/(x(log x)^(1//3))

int _(log pi - log 2 ) ^(log pi) (e ^(x))/(1- cos ((2)/(3)e ^(x)))dx is equal to

int_(-1)^(1)(e^(x)+e^(-x))/(2(1+e^(2x)))dx is equal to