Home
Class 12
MATHS
int0^1 (log x)/(sqrt(1-x^2))dx...

`int_0^1 (log x)/(sqrt(1-x^2))dx`

A

`pi/2 log2`

B

`pi log 2`

C

`-pi/2 log 2 `

D

`- pi log 2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(1)(ln x)/(sqrt(1-x^(2)))dx

Evaluate int_0^1 log(1+x)/(1+x^2)dx

(i) int_0^1 (dx)/sqrt(1-x^2) (ii) int_0^1 (dx)/sqrt(1+x^2) (iii) a int_1^sqrt3 (dx)/(1+x^2) b int_0^1 (dx)/(1+x^2) (iv) int_0^(2//3) (dx)/(4+9x^2) (v) int_0^1 x/(x^2+1)dx (vi) int_2^3 x/(x^2+1) dx

int_0^1 log(sqrt(1+x)+sqrt(1-x))dx= (A) 1/2(log2-pi/2+1) (B) 1/2(log2+pi/2+1) (C) 1/2(log2+pi/2-1) (D) none of these

int_-1^1 log(x+sqrt(x^2+1))dx

int_(0)^(1)(log(1+x))/(1+x^(2))dx

Show that :int_(0)^(1)(log x)/((1+x))dx=-int_(0)^(1)(log(1+x))/(x)dx

Evaluate the following integral: int_0^1("log"(1+x))/(1+x^2)dx

" 8."int_(0)^(oo)(log x)/(1+x^(2))dx