Home
Class 12
MATHS
The value of int 0^(sin^2x)sin^(-1)sqrt(...

The value of `int _0^(sin^2x)sin^(-1)sqrt(t)dt+int _0^(cos^2x)cos^(-1)sqrt(t)dt` is

A

`pi//2`

B

`1`

C

`pi//4`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t)dt is

The value of int_(0)^(sin^(2)) sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t)dt , is

Statement-1: int_(0)^(sin^(2)x) sin^(-1)sqrt(t dt)+int_(0)^(cos^(2)x) cos^(-1)sqrt(t dt)=(pi)/(4) for all x. Statement-2: (d)/(dx) int_(theta(x))overset(psi(x)) f(t)dt=psi'(x)f(psi(x))-psi'(x)f(psi(x))

Let f(x)=int_0^(sin^2x) sin^-1(sqrt(t))dt+int_0^(cos^2x) cos^-1(sqrt(t))dt , then (A) f(x) is a constant function (B) f(pi/4)=0 (C) f(pi/3)=pi/4 (D) f(pi/4)=pi/4

Prove that: y=int_((1)/(8))^(sin^(2)x)sin^(-1)sqrt(t)dt+int_((1)/(8))^(cos^(2)x)cos^(-1)sqrt(t) where 0<=x<=(pi)/(2), is the equation of a straight line parallel to the x-axis.Find the equation.

The value of (int_(0)^(1)(dt)/(sqrt(1-t^(4))))/(int_(0)^(1)(1)/(sqrt(1+t^(4)))dt) is

int_(0)^(1)t^(5)*sqrt(1-t^(2))*dt