Home
Class 12
MATHS
For any integer n , the integral int0^pi...

For any integer n , the integral `int_0^pi e^(sin^2 x) cos^3((2n+1)x)dx`

A

`-1 `

B

`0`

C

`1`

D

`pi`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

For any integer n,the integral int_(0)^(3) e^(sin^(2)x)cos^(3)(2n+1)x" dx" has the value

For any integer n, the integral int_(0)^( pi)e^(cos^(2))cos^(3)(2n+1)xdx has the value

Let m be any integer. Then, the integral int_(0)^(pi) (sin 2m x)/(sin x)dx equals

The value of int_(0)^( pi)e^(sin^(2)x)cos(2n+1)xdx=

Evaluate the integrals int_(0)^((pi)/(2))(sin x)/(1+cos^(2)x)dx

The value of the integral int_(0)^(pi) (x sin x)/(1+cos^(2)x)dx , is

Find the Definite Integrals : int_0^(pi/2) sin^2x cos^3x dx

E valuate the integration int_(0)^((pi)/(2))sin^(3)x cos^(2)xdx