Home
Class 12
MATHS
int(1//e)^e |log x|dx=...

`int_(1//e)^e |log x|dx`=

A

`1 - 1/e `

B

`2(1 - 1/e)`

C

`e^(-1)-1`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

int_(1)^(e) log (x) dx=

If I=int_((1)/(e))^(e)|log x|(dx)/(x^(2)), then I equals (A) 2 (B) (2)/(e)(C)2(1-(1)/(e))(D)0

int_(1)^(e )x^(x)dx+ int_(1)^(e )x^(x)log x dx=

int_(e )^(e^(2))log x dx =

Evaluate :int_(1)^(e)(log x)/(x)dx

int_(1)^(x)log_(e)[x]dx

int_(1//e)^(e) (dx)/(x(log x)^(1//3))

int_(1)^(e)(1+log x)/(x)dx=