Home
Class 12
MATHS
int(-pi/4)^(pi/4) log((2 - sinx)/(2 + si...

`int_(-pi/4)^(pi/4) log((2 - sinx)/(2 + sinx)) dx=`

A

1

B

3

C

2

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(-pi/2)^(pi/2) log((2-sinx)/(2+sinx))dx

Evaluate the following : int_(-pi//2)^(pi//2)log((2-sinx)/(2+sinx))dx

Evaluate the following integral: int_(-pi//2)^(pi//2)log((2-sinx)/(2+sinx))dx

int _(-pi/2)^(pi/2)log((2-sin x)/(2+sinx))dx is equal to

int_(-pi//4)^(pi//4)(dx)/((1+sinx))

The value of int_(-pi/2)^(pi/2) ((1+sin^(2)x)/(1 +pi^(sinx))) dx is

int_(0)^(pi//2)log ((1+ sinx)/ (1+ cos x )) dx=

int_(-pi/2)^(pi/2)(1+sin^2x)/(1+pi^(sinx))dx=

int_(pi//4)^(3pi//4)(xsinx)/(1+sinx)dx