Home
Class 12
MATHS
The value of the integral int(pi//6)^(pi...

The value of the integral `int_(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))dx` is equal to

A

`log_e((2(pi+3))/(2pi + 3sqrt3))`

B

`log_e (( pi + 3)/(2 (2pi + 3sqrt3)))`

C

`log_e((2pi + 3sqrt3)/(2(pi + 3)))`

D

`log_e ((2(2pi+3sqrt3))/(pi + 3))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi//4)+1)dx is

The value of the integral int_(0)^(pi//4) (sinx+cosx)/(3+sin2x)dx ,is

int_(pi/3)^(pi/2) sinx dx

The value of the integral int_(pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx , is

The integral int_(-pi//2)^(pi//2)(e^(|sinx|).cosx)/(1+e^(tanx))dx equals

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

The value of the definite integral int_(2pi)^(5pi//2)(sin^(-1)(cosx)+cos^(-1)(sinx))dx is equal to

int_(-pi//2)^(pi//2)(sinx)/(1+cos^(2)x)e^(-cos^(2)x)dx is equal to

If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"_(e)x, (xgt0) then the value of the integral int_(-pi//4)^(pi//4)g(f(x)) dx is

The value of the integral int_(0)^(pi)(e^(|cosx|)sinx)/(1+e^(cotx))dx is equal to