Home
Class 12
MATHS
Evaluate int0^a xf(x) dx if f(a-x)=f(x)...

Evaluate `int_0^a xf(x) dx` if `f(a-x)=f(x)`

A

`int_0^a f(x) dx`

B

`a^2/2 int_0^a f(x) dx`

C

`a/2 int_0^a f(x) dx`

D

`-a/2int_0^a f (x) dx`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^a f(a-x) dx=

int_(0)^(a) (f(a+x) + f(a-x) ) dx =

prove that : int_(0)^(2a) f(x)dx = int_(0)^(a) f(x)dx + int_(0)^(a)f(2a-x)dx

int_(0)^(a)[f(x)+f(a-x)]dx=

Prove that int_(0)^(a) f(x) dx= int_(0)^(a) f(a-x)dx . Hence find int_(0)^((pi)/(2)) sin^(2) xdx

If f(x) and g(x) be continuous functions in [0,a] such that f(x)=f(a-x),g(x)+g(a-x)=2 and int_0^a f(x)dx=k , then int_0^a f(x)g(x)dx= (A) 0 (B) k (C) 2k (D) none of these

Let the function f be defined by f (x) = |x-1| -1/2, 0 le x le 2, f (x +2 ) = f (x) for all x in R. Evaluate (i) int _(0) ^(100) f (x) dx (ii) int _(0) ^(1)| f(2x ) |dx

Prove that int_0^a f(x)dx=int_0^af(a-x)dx , hence evaluate int_0^pi(x sin x)/(1+cos^2 x)dx

Let f(x) and g(x) be any two continuous function in the interval [0, b] and 'a' be any point between 0 and b. Which satisfy the following conditions : f(x)=f(a-x), g(x)+g(a-x)=3, f(a+b-x)=f(x) . Also int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx, int_(a)^(b)f(x)dx=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx If f(a+b-x)=f(x) , then int_(a)^(b)xf(x)dx is

Prove that : int_(0)^(2a) f(x)dx=int_(0)^(a) f(x)dx+int_(0)^(a) f(x)dx+int_(0)^(a) f(2a-x)dx