Home
Class 12
MATHS
Let I(1) =int(a)^(pi-a)xf(sinx)dx,I(2)=i...

Let `I_(1) =int_(a)^(pi-a)xf(sinx)dx,I_(2)=int_(a)^(pi-a)f(sinx)dx`, then `I_(2)` is equal to

A

`pi/2 I_1`

B

`pi I_1`

C

`2/pi I_1`

D

`2I_1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^( pi)xf(sin x)dx=(pi)/(2)int_(0)^( pi)f(sin x)dx

If int_(0)^(pi)xf(sinx)dx=A int_(0)^(pi//2) f(sinx)dx , then A is

int_(pi)^(2pi)|sinx|dx=?

int_(0)^(2pi)|sinx|dx=?

int_(0)^(2pi)(sinx+cosx)dx=

int_(pi/3)^(pi/2) sinx dx

For f(x) =x^(4) +|x|, let I_(1)= int _(0)^(pi)f(cos x) dx and I_(2)= int_(0)^(pi//2) f(sin x ) dx "then" (I_(1))/(I_(2)) has the value equal to

I_(1)=int_(0)^((pi)/2)In (sinx)dx, I_(2)=int_(-pi//4)^(pi//4)In(sinx+cosx)dx . Then

Let I_(1)=int_(0)^(3 pi)(f(cos^(2)x)dxI_(2)=int_(0)^(2 pi)(f(cos^(2)x)dx and I_(3)=int_(0)^( pi)(f(cos^(2)x)dx, then (A)I_(1)+2P_(2)+3I_(2)=0(B)I_(1)=2I_(2)+I_(3)(C)I_(2)+I_(3)=I_(1)(D)I_(1)=2I_(3)

If I_(1)=int_(0)^(pi//2)f(sin2x)sin x dx and I_(2)=int_(0)^(pi//4)f(cos2x)cosx dx , then I_(1)//I_(2) is equal to