Home
Class 12
MATHS
Let I(n) = int(0)^(1) (logx)^(n)dx, wher...

Let `I_(n) = int_(0)^(1) (logx)^(n)dx`, where n is a non-negative integer. Then `I_(2001) + 2011 I_(2010)` is equal to -

A

`I_1000 + 999 I_998`

B

`I_90 + 890 I_889`

C

`I_100 + 100 I_99`

D

`I_13 + 54 I_52`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

let I_(n)=int_(0)^((pi)/(4))tan^(n)xdx,n>1

If I_(n)=int_(0)^((pi)/(4))tan^(n)xdx, where n is a positive integer,then I_(10)+I_(8) is equal to (A)(1)/(9)(B)(1)/(8) (C) (1)/(7)(D)9

Let I_(n) = int_(0)^(1//2)(1)/(sqrt(1-x^(n))) dx where n gt 2 , then

Let I_(n)=int_(0)^(pi//2)x^(n)cosxdx, where in is a non-negative integer Then sum_(n=2)^(oo)((I_(n))/(n!)+(I_(n-2))/((n-2)!)) equals-

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

Let I_(n)=int_(0)^(pi//4)tan^(n)xdx,n in N , Then

If I_(n)=int_(1)^(e)(log x)^(n)dx then I_(8)+8I_(7)=