Home
Class 12
MATHS
int0^1000 e^(x-[x])dx...

`int_0^1000 e^(x-[x])dx`

A

`e^(1000) - 1`

B

`(e^1000-1)/(e-1)`

C

`1000(e-1)`

D

`(e-1)/(1000)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^a e^(x-[x])dx=10e-9 then find a

The value of sum_(n=1)^1000 int_(n-1)^n e^(x-[x])dx , where [x] is the greatest integer function, is (A) (e^1000-1)/1000 (B) (e-1)/1000 (C) (e^1000-1)/(e-1) (D) 1000(e-1)

Evaluate int_0^1 e^(2x) dx

int_0^1 e^-x/(1+e^x)dx

int_0^10 [x]e^([x])/e^(x-1)dx where [x] is GIF

What is the value of int_0^1 (x-1) e^(-x) dx

int_(0)^(1)x e^(x)dx=

Evaluate : int_0^(ln2)x e^(-x)dx

int_(0)^(10)e^(2x)dx