Home
Class 12
MATHS
The least value of the function phi(x)...

The least value of the function
`phi(x)=overset(x)underset(5pi//4)int (3sin t+4 cos t)dt`
on the integral `[5pi//4,4pi//3]`, is

A

`sqrt3 + 3/2`

B

` -2 sqrt3 + 3/2 + 1/sqrt2`

C

`3/2 + 1/sqrt2`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The least value of the function phi(x)=int_(5pi//4)^(x) (3sin t+4 cos t)dt on the integral [5pi//4,4pi//3] , is

The least value of the function phi(x)=int_(5 pi/4)^(x)(3sin t+4cos t)dt on the interval [5 pi/4,4 pi/3] is (i) sqrt(3)+(3)/(2)( ii) -2sqrt(3)+(3)/(2)+(1)/(sqrt(2))( iii) (3)/(2)+(1)/(sqrt(2))( iv) none of these

The least value of the function phi(x)=int_((7pi)/6)^(x)(4sint+3cost)dt on the interval [(7pi)/6,(4pi)/3] is

The greatest value of f(x)=int_((5 pi)/(3))^(x)(6cos t-2sin t)dt in the interval [(5 pi)/(3),(7 pi)/(4)], is equal to

The period of the function y=sin(2 pi t+(pi)/(3))+2sin(3 pi t+(pi)/(4))+3sin5 pi t is

Find the period of the function f(x)=3sin((pi x)/(3))+4cos((pi x)/(4))

Verify Rolle's theorem for each of the following functions : f(x) = e^(-x) (sin x - cos x) " in " [(pi)/(4), (5pi)/(4)]

int_(0)^(pi)sin 5 x cos 4x dx=