Home
Class 12
MATHS
The greatest value of f(x)=int1^x|t|\ dt...

The greatest value of `f(x)=int_1^x|t|\ dt` on the interval `[-1/2,1/2]` :

A

`3//8`

B

`-1//2`

C

`-3//8`

D

`2//5`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The greatest value of f(x)=int_(1)^(x)|t||dt on the interval [-(1)/(2),(1)/(2)]:

The greater value of (x) =int_(-1//2)^(x) |t|dt on the interval [-1//2,1//2] , is

If f(x)= int_(-1)^(x)|t|dt ,x>=-1 then

The difference between the greatest and least values of f(x)=int_(0)^(x)(t+1)dt on [2,3] is

Let f(x) = int_(-2)^(x)|t + 1|dt , then

The range of the function f(x)=int_(1)^(x)|t|dt , x in[(-1)/(2),(1)/(2)] is

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

The difference between the greatest and least values of the function F(x) = int_(0)^(x) (t+1) dt on [1,3] is