Home
Class 12
MATHS
int(0)^(2pi)(sinx+ abs(sinx)) dx =...

`int_(0)^(2pi)(sinx+ abs(sinx)) dx =`

A

0

B

4

C

8

D

1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) abs(sinx-cosx) dx=

int_(0)^(2pi)|sinx|dx=?

If A=int_(0)^(pi)(sinx)/(sinx+cosx)dx, B=int_(0)^(pi)(sinx)/(sinx-cosx)dx , then

int_(0)^(pi)(x sinx)/((1+sinx))dx=pi((pi)/(2)-1)

int_(0)^( pi/2)(cosx/(2+sinx))dx

int_(0)^(pi) cos 2x . Log (sinx) dx

If A=int_(0)^(pi)(sinx)/(sinx+cosx)dx and B=int_(0)^(pi)(sinx)/(sinx-cosx)dx , then

int_(0)^(pi//2)(sinx)/((sinx+cosx))dx=?

int_(0)^(2pi)(sinx+cosx)dx=

int_(0)^(pi//2) (sin x) / ((sinx + cosx)^(2) ) dx =