Home
Class 12
MATHS
If h(x)=int(0)^(x)sin^(4)tdt, then h(x+p...

If `h(x)=int_(0)^(x)sin^(4)tdt`, then `h(x+pi)` equals

A

`(h(x))/(h(pi))`

B

`h(x) h(pi)`

C

`h(x) - h(pi)`

D

`h(x) + h(pi)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(0)^(x)sin^(6)tdt, then f(x+pi)=

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x)=int_(0)^(x)(sin^(4)t+cos^(4)t)dt, then f(x+pi) will be equal to

f(x)=int_(0)^(1)|t-x|tdt

If g(x)=int_(0)^(x)cos4tdt then equals: (1)(g(x))/(g(pi))(2)g(x)+g(pi)(3)g(x)-g(pi)(4)g(x)*g(pi)

The value of lim_(xrarr0) (int_(0)^(x)tdt)/(xtan (x+pi)) is equal to

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

If int_(0)^(pi) x f (sin x) dx = A int _(0)^(pi//2) f(sin x) dx , then A is equal to

If int_(0)^(y)e^(-t^(2))dt+int_(0)^(x^(2))sin^(2)tdt=0 , then (dy)/(dx) at x=y=1 is

int_(0)^( pi/4)sin|x|dx