Home
Class 12
MATHS
The integral overset(pi//2)underset(pi//...

The integral `overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx` is equal to

A

`int_0^(log(1 + sqrt2)) 2(e^u + e^(-u))^16 du`

B

`int_0^(log ( 1 + sqrt2)) (e^u + e^(-u))^17du`

C

`int_0^(log(1+sqrt2)) (e^u - e^(-u))^17 du`

D

`int_0^(log(1 + sqrt2)) 2(e^u - e^(-u))^16 du`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int_(pi//4)^(pi//2) (2 cosecx)^(17)dx is equal to

int _(pi//4)^(pi//2) "cosec"^(2)dx is equal to

The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

int_(0)^(pi//2) sin^(4)xcos^(3)dx is equal to :

int _(-pi//2)^(pi//2) sin^(4) x cos^(6) x dx is equal to

The integral int_(pi//6)^(pi//3)sec^(2//3)x " cosec"^(4//3)x dx is equal to

The value of the integral int_(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))dx is equal to

Evaluate the following definite integrals underset(pi//6)overset(pi//3)intcot^(2)xdx