Home
Class 12
MATHS
If f(x) = ae^(2x) + be^(x) + cx satisfie...

If `f(x) = ae^(2x) + be^(x) + cx` satisfies the conditions `f(0) = -1 , f' (log 2) = 31, int_0^("log" 4) [f(x) - cx] = 39/2`, then

A

P = 2, Q = -3, R = 4

B

P = -5, Q = 2, R = 3

C

P = 5, Q = -2, R = 3

D

P = 5, Q = -6, R = 3

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=ae^(2x)+be^(x)+cx satisfies the condition f(0)=ae^(2x)+be^(x)+cx satisfies the condition f(0)=-1, f'(log2)=31,int_(0)^(log4)(f(x)-cx)dx=(39)/(2) , then

If f(x)=ae^(2x)+be^x+cx satisfies the conditions f(0)=-1, f\'log(2)=28, int_0^(log4) [f(x)-cx]dx=39/2 , then (A) a=5, b=6, c=3 (B) a=5, b=-6, c=0 (C) a=-5, b=6, c=3 (D) none of these

If f(x)=pe^(2x)+qe^(x)+rx satisfies the condition f(0)=-1,f'(In2)=31 and int_(0)^(In4)(f(x)-rx)dx=(39)/(2) ,then the value of (p+q+r) is equal to

Let f(x)=ae^(2x)+be^x+cx , where f(0)=-1, f'(log_e2)=21 and int_0^(log_e4)(f(x)-cx)dx=39/2 then the value of abs(a+b+c) is__________

The function f(x), that satisfies the condition f(x) = x + int_0^(pi//2) sinx . Cosyf(y) dy, is :

The function f(x), that satisfies the condition f(x) = x + int_0^(pi//2) sinx . Cosyf(y) dy, is :

Ify=f(x) satisfies the condition f(x+(1)/(x))=x^(2)+(1)/(x^(2))(x!=0) then f(x)=